Sequential Optimality Conditions and Variational Inequalities

نویسندگان

  • Jitendra Maurya Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India
  • Sanjeev Singh Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India
  • Shashi Mishra Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India
چکیده مقاله:

In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a nonlinear optimization problem. The nonlinear optimization problem is associated with the variational inequality problem. We also extend the complementary approximate Karush Kuhn Tucker condition from scalar optimization problem to multiobjective optimization problem and associated with the vector variational inequality problem. Further, we prove that with some extra conditions of convexity and affinity, complementary approximate Karush Kuhn Tucker conditions are sufficient for the variational inequality problem and vector variational inequality problem. Finally, we verify our results via illustrative examples. An example shows that a point which is a solution of variational inequality problem is also a CAKKT point.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary Optimality Conditions for Control of Strongly Monotone Variational Inequalities

In this paper we derive necessary optimality conditions involving Mordukhovich coderivatives for optimal control problems of strongly monotone variational inequalities.

متن کامل

Coercivity conditions and variational inequalities

Various coercivity conditions appear in the literature in order to guarantee solutions for the Variational Inequality Problem. We show that these conditions are equivalent to each other and that they are not only sufficient, but also necessary for the set of solutions to be non-empty and bounded.

متن کامل

Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities

We derive necessary and sufficient conditions for optimality of a problem with a pseudoconvex objective function, provided that a finite number of solutions are known. In particular, we obtain that the gradient of the objective function at every minimizer is a product of some positive function and the gradient of the objective function at another fixed minimizer. We apply this condition to prov...

متن کامل

Sucient Optimality Conditions and Semi-Smooth Newton Methods for Optimal Control of Stationary Variational Inequalities

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimalit...

متن کامل

Sufficient Optimality Conditions and Semi-Smooth Newton Methods for Optimal Control of Stationary Variational Inequalities

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimalit...

متن کامل

Optimality Conditions for Solutions of Constrained Inverse Vector Variational Inequalities by Means of Nonlinear Scalarization

This work is devoted to examining inverse vector variational inequalities with constraints by means of a prominent nonlinear scalarizing functional. We show that inverse vector variational inequalities are equivalent to multiobjective optimization problems with a variable domination structure. Moreover, we introduce a nonlinear function based on a well-known nonlinear scalarization function. We...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره 1

صفحات  1- 25

تاریخ انتشار 2020-05-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023